

Introduction

The FFT4096 core the FFT and IFFT computations for N input samples, where N can be any power of 2 between 32 and 4096 (32, 64, 128,......4096), in hardware with very low latencies. The core also supports 2N-point real time samples to complex symmetric frequency samples FFT and N complex symmetric frequency samples to 2N time domain real samples IFFT.

Features

Supports 32/64/128/256/512/1024/2048/4096 point complex FFT and IFFT and up to 8192 point real-to-complex and complex-to-real FFT and IFFT and can switch dynamically. The real-to-complex and complex-to-real FFT/IFFT does not require any additional memory.

Built-in bit reversal. Outputs in natural order

Supports reading output data in any order (read address)

Low Latency. Can be customized to improve latency vs. gate count

Throughput of 1 sample per clock

Parameterized bit widths and fixed-point option.

Test bench with fixed-point Matlab and optional C++ models

Available in ASIC and FPGA technologies

Minimal gate count implementation

Supports flushing and re-starting of the FFT operation instantly

Configurable bit width based on SQNR requirement for random inputs or for a specific stimuli pattern.

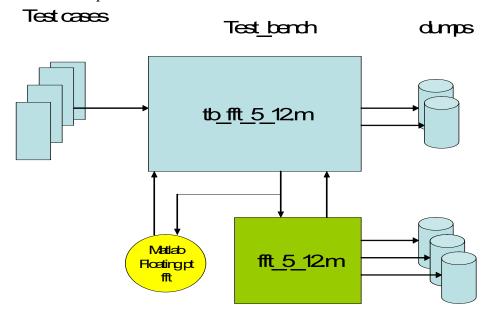
Customization for OFDM applications

Applications

- DSL
- Broadband over power lines
- Digital Video Broadcasting (DVB)
- Ethernet-over-coax
- Other OFDM-based communications

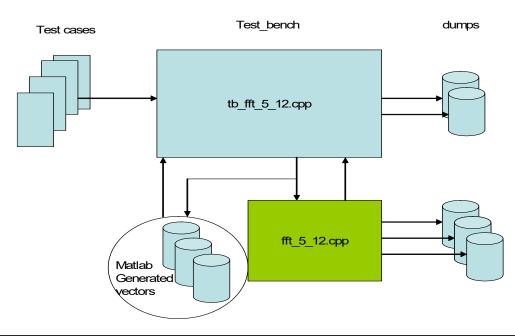
CORE PINOUT

Pin Name	Size	Direction	Description
Clk	1	In	System clock.
reset_n	1	In	Asynchronous reset
Enable	1	In	Enable for the core
Abort	1	In	1 pulse. Abort current operation and return to reset state
fft_ifft_n	1	In	1: FFT mode 0: IFFT mode
fft_size	4	In	Number of carriers. 0 – 4 : invalid 5 : 32 6 : 64 7 : 128 8 : 256 9 : 512



Pin Name	Size	Direction	Description
			10 : 1024
			11 : 2048
			12 : 4096
			13 – 15 : invalid
process_mode	1	In	0: complex to complex
			1: complex to real if IFFT
			real to complex if FFT
Start	1	In	1 pulse. Start processing
manual_shift_mode	1	In	0 : Auto scaling mode
			1 : Manual scaling mode
scaling_shift_in	12	In	12 bit vector for manual scaling.
			Each bit applies scaling at the
			corresponding radix-2 stage
			(consider radix-4 as 2 radix-2
			stages for this purpose).
			a. 0: no scaling
			b. 1: scale by 2.
Ready	1	Out	'1' when core is idle. Upon start
			of an operation, it will go to '0',
			and return to '1' once the
			initiated processing is done.
fft_stage	3	Out	Indication of the current stage of
			the FFT/IFFT
Progress	13	Out	A down-counter indicating the
			number of clocks remaining for
			completion of current
			operation.
sat_flag	1	Out	An interface that provides the
			indication if saturation
			occured.
			0 : no saturation
			1 : saturation occurred.
scaling_shift	5	Out	The accumulated right shift along
			the FFT/IFFT processing due
			to the block float operation.
			All outputs are scaled by
			½^scaling_shift.
Manage and Indeed		>	
Memory Interface (4 points pe	r addres		NACTOR ASSESSMENT
mem_wr	1	Out	Write to buffer. 1 pulse
mem_wr_addr	10	Out	Buffer address for write
mem_wr_data	128	Out	Data to write to buffer
mem_en	1	Out	Read from buffer. 1 pulse
mem_rd_addr	10	Out	Buffer address for read
mem_rd_data	128	In	Data read from buffer. The
			latency of the data (X) can be
			more than 1 clock.

MATLAB MODEL


- Serves as the gold reference
- Used as a platform by customers to optimize the parameters and sign-off on performance.
- RTL and C++ outputs will match bit-to-bit with Matlab.

C++ Model

C++ model environment is very similar to Matlab:

C-Model Environment

Latencies

FFT size	Complex-tocomplex FFT/IFFT latency (clocks)	Real-to-complex FFT and complex- to-real IFFT latency
4096	6250	7274
2048	3178	3690
1024	1370	1626
512	730	858
256	330	394
128	202	234
64	58	74
32	34	42

Deliverables

- Synthesizable Verilog RTL source code
- · Fixed-point Matlab model
- Optional C++ bit accurate model
- Simulation scripts
- Self-checking Test environment
 - · Test-bench
 - · Test-vectors
 - · Expected results
- · Synthesis scripts
- User Documentation

Contact Information

IP Cores, Inc. 3731 Middlefield Rd. Palo Alto, CA 94303, USA Phone: +1 (650) 815-7996 E-mail: info@ipcores.com

www.ipcores.com