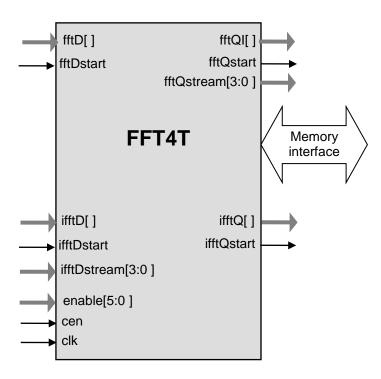


Introduction

The FFT4T core implements a 128 point complex FFT and IFFT over multiple data streams in hardware.


Features

- Supports 128-point complex streaming FFT and IFFT operating simultaneously
- Input and output data are in the natural order
- Multiple streams on input, with optional offset by using a 50% (64 samples) overlap.
- Throughput of 1 sample (In-phase I + quadrature Q) per sample clock for each of the input streams; nogap processing of the input data
- Input of FFT and output of IFFT are parallel streams (multiple samples, one for each of the streams in parallel)
- Output of FFT and input of IFFT are per-stream, multiple samples in parallel.

Applications

• Signal analysis

Symbol

www.ipcores.com

FFT4T Core

128 Point Multi-stream FFT Core

Pin Description

Name	Туре	Description
Common		
clk	Input	Core clock signal (4x sample clock)
cen	Input	Synchronous enable signal. When LOW the core ignores all its inputs and all its outputs must be ignored.
enable[5:0]	Input	RF band enable signals. Each bit controls two streams (path A and path B).
FFT		
fftD []	Input	Input of FFT, Multiple samples in parallel, one for each stream. The samples shall be clocked in on the sample clock.
fftDstart	Input	HIGH pulse clocked on the sample clock indicates the initial 0 sample of the 128-sample frame of fftD
fftQ[]	Output	Output of the FFT, multiple samples in parallel. Each stream is output contiguously on sequential sample clocks.
fftQstart	Output	HIGH pulse on sample clock marks the first word of fftQ output (n = 0, samples 015) for the stream
fftQstream[3:0]	Output	The value between 0 and 11 indicates the stream number
IFFT		
ifftD []	Input	Input of the IFFT, Multiple samples in parallel. Each stream is clocked in put contiguously on sequential <i>sample clocks</i> .
fftDstart	Input	HIGH pulse clocked on the <i>sample clock</i> indicates the start of the 128-sample frame (n = 0, samples 015) for the stream
fftDstream[3:0]	Input	The value between 0 and 11 indicates the stream number
fftQ[]	Output	Output of IFFT, 12 samples in parallel, one for each stream. The samples shall be clocked on sample clock.
fftQstart	Output	HIGH pulse on the <i>sample clock</i> indicates the initial 0 sample of the 128-sample frame of fftD path A streams

Deliverables

- Synthesizable Verilog RTL source code
- · Bit-accurate software model
- · Simulation scripts
- Self-checking Test environment
 - Test-bench
 - · Test-vectors
 - · Expected results

FFT4T Core

128 Point Multi-stream FFT Core

- · Synthesis scripts
- User Manual

Contact Information

IP Cores, Inc. 3731 Middlefield Rd. Palo Alto, CA 94303, USA Phone: +1 (650) 815-7996 E-mail: info@ipcores.com

www.ipcores.com